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Abstract The algebraic swchue of covariant anomalies and wvariant Schwinger terms in an 
anomalous Yang-Mills theory is investigated A whomological characterization is formulated 
and geomeuically interpreted. A new method of determining covariant anomalies and covariant 
Schwinger terms based on the B R S - ~ ~ ~ ~ - B R S  wmplex is presented. 

1. Introduction 

The phenomenon of anomalies in a quantum field theory has been extensively studied during 
the last decade. Anomalies in the divergence of the fermionic current and Schwinger terms 
in the equal time commutator of the gauge group generators were found to be different 
manifestations of these anomalies [1,2]. It has been recognized for a long time that 
anomalies can occur in two different forms, known as consistent and covariant anomalies. 
Besides perturbative calculations, the former have been investigated by algebraic [3-5] and 
topological means [6]. Consistent anomalies as well as consistent Schwinger terms are 
characterized by an algebraic condition, which is of cohomological nature. 

On the other band, covariant anomalies and covariant Schwinger terms have been studied 
from various viewpoints in the last few years. Bardeen and Zumino [7] have conslructed 
the covariant form of the anomaly in any even-dimensional spacetime. Furthermore the 
covariant Schwinger term occuring in the equal time commutator of the covariant Gauss 
law operators has been determined by different methods in [8-10,131. 

In [ l l ]  it was shown how the covariant anomaly can be understood in terms of 
presymplectic geometry on the space of gauge potentials. However, it is not clear how 
the covariant Schwinger term can he interpreted in this context. 

Furthermore, it was realized that both covariant anomalies and covariant Schwinger 
terms can he derived by enlarging the usual BRS algebra to include an antighost and an anti- 
BRS operator 112,131. So called homotopy operators were introduced which lead to descent 
equations for the covariant anomaly and the covariant Schwinger term. As a consequence, 
these terms satisfy a certain algebraic condition which can be viewed as the covariant 
counterpart of the consistency condition for consistent anomalies. Another approach for 
determining the covariant descent equations has been proposed in [9] by gauging the (anti- 
)BRS symmetry. 
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For the sake of completeness we should mention that a different characterization of the 
covariant anomaly has already been suggested in [141. 

The aim of this paper is to investigate the algebraic structure of covariant anomalies. 
In section 2 we shall formulate a new cohomological characterization of the integrated 
covariant anomaly and covariant Schwinger term. This analysis is based on the results which 
we have previously obtained in [lo]. In section 3 we give a rigorous mathematical treatment 
of the B R S - ~ ~ ~ ~ - B R S  approach of [12,13] in terms of graded differential algebras. This will 
be a generalization of the algebraic construction of consistent anomalies described in [3]. 
Thereby the cohomological structure of the covariance condition proposed in [12,13] is 
elucidated. Furthermore, we find a new algebraic method of deriving the covariant descent 
equations. Our method does not rely upon the use of homotopy operators and leads to 
strong covariance conditions for the covariant anomaly and the covariant Schwinger term. 
Finally we comment on the relation between these two cohomological characterizations. 
The relevant definitions are summarized in the appendix. 

2. The notion of covariance for anomalies and Schwinger terms 

The present section is devoted to showing that both the covariant anomaly and the covariant 
Schwinger term satisfy an algebraic condition that can be cohomologically interpreted. To 
do this we shall use the geometric framework which was introduced in [lo]. 

Let A be the space of connections of a trivial G-bundle P over n-dimensional spacetime 
M and consider the principal 8-bundle d(M, n.4, G) of all gauge potentials over the gauge 
orhit space M ,  where G is the gauge group with Lie algebra Lie8. 

The consistent anomaly arises from an anomalous continuity equation 

f y , ( J )  (A) = Anom(A, e )  = dx Anom"(A,x)('(x) A E d. 5 E Lie8  (2.1) 
Ibf  

for the vacuum expectation value of the consistent fermionic current J in the gauge field 
background. The integrated consistent anomaly is a functional which is linear in .$ and local 
in A. ( J )  is considered as a closed one-form over d and is connected with the generating 
functional 2 by ( J )  = id$/z. The fundamental vector field generated by an element p 
of the gauge algebra LieP is denoted by 4, i. is the substitution operator, and dd is the 
exterior derivative on d. We note that in local coordinates the fmdamental vector field 
reads Yc = j d x  (on)",p'(x)(s/sA:(x)), where DA denotes the covariant derivative and 
the indices a, b refer to a basis in the Lie algebra of G. Thus (2.1) can be written in the 
more familiar form 

(DA)",~(J)I (x)  = -Anom'(A,x). (2.2) 

Finally the Ward operator can be identified with the Lie derivative Ly, with respect to 
Ye. So (2.1) leads to the Wess-Zumino (w) consistency condition [I51 for the consistent 
anomaly 

LY, Anom(., 0) - LY, Anom(., F )  - Anom(., [e ,  01) = 0. (2.3) 
_v 

The covariant anomaly Anom arises from an analogous equation for the covariant current 
0) 
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However, both forms of the anomaly are related to each other by the Bardeen-Zumino 
polynomial A 171, which will here be considered as a oneform on A. This relation is given 

(2.5) 
where the condition LytA = -ddhom( t )  is imposed on A. In [IO] we have interpreted 
A as a connection oneform on a certain line bundle over A with curvature P = ddA. 

In [lo] we have calculated the covariant Schwinger term in the commutator of the 
covariant Gauss law operator in any even dimension of spacetime. Thereby we derived the 
following formula 

- by 

Anom(A, 8 )  = Anom(A, 8 )  + i qA 

If we define the vector field Xf = JdxP(x)(S/SA~(x)) E X ( A )  and use the relation 
i6.F = -ddAnom(C), the covariant Schwinger term can now be written in a manifestly 
antisymmetric form 

(2.7) 
Consistent anomalies and Schwinger terms can be studied within the space Cq(Lie 8, C(d)) 
of alternate q-linear maps on LieB with values in C(d), the space of functions on A. (To be 
precise, one has to restrict to the subset of local functionals [5] on A.) In order to formulate 
an algebraic condition for covariant terms, we shall view elements of U&ie  8, C(d)) as 
maps A + Ag (Lie 8)' and denote the space of all such maps by C(A, Aq &ie 8)*). Here 
Aq(Lie 8)' denotes the qth exterior tensor product of the dual of Lie8. 

- 
%, $2) = $(ixkirtl.F - i x t l i rkn .  

There is a free right action R of 8 on the product d x Aq(LieQ)*, given by 

Rh(A, 4)  := (Ah. Ad*@-')@) p E Aq(Lie8)*, h E 8 (2.8) 
with the coadjoint action Ad* of 8 on Aq(Lie8)* 
(Ad*(g)@)(h. . . . . t q )  := p(Ad(g-')81, . . . , Ad(g-')k) 

g E 8, 81.. . . , tq E Lie8. (2.9) 
The corresponding derived representation, denoted by ad*, is given by 

P 

(ad*(s)@)U)(h,. . . , tq) = - c p ( 8 1 ,  . . . , [s, til, . . .. tq) tl E LieG. (2.10) 
i=I 

An element @ E C(A, Aq(Lie8)*) is called equivariant if 
#(A8) = Ad*(g-')d(A) (2.11) 

and the space of equivariant maps is denoted by C,(d, Aq(Lie8)*). 
Using (2.3). (2.5) and (2.10) it can easily be verified that 

(2.12) 

On the other hand, we find for the covariant Schwinger term (2.7), using the gauge invariance 
of 3, namely Ly,P = 0, and the commutator 

(2.13) 
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Proposition 1. 

(0 Anom E C,(d, (Lie G?) 

(ii) d E c,(A, A2&ieG)*). 

- 

Let us construct the exterior coadjoint bundle &; over the gauge orbit space by the 
commutative diagram 

E; := A x A4(LieG)* --+ &; := A x p  /\“(L.ieGY 

I I (2.15) 

d A M .  - 
Proposition 1 tells us that Anon and s descend to sections of the two vector bundles &; and 
q, respectively. The space of sections r(E,*) of the trivial bundle E; becomes a g-nodule 
with respect to the left action 

(g . q5)(A) := Ad*(g)q5(A8) g E G, q5 E C(d, Aq(LieG)*) (2.16) 

which in its infinitesimal form reads 

(e(t)d)(A) = (Ly,d)(A) + ad*(Od(A) t E LieG. (2.17) 

Now we consider the double complex KP.4 := KP(LieL7, r(E;)) of n co-chains with values 
in the space of sections of E; with the two coboundary operators 

6: Kp(LieG, l’($)) +- Kp(LieG, I?(Ei+l)) 

( s @ ) ( t l , . . . . e p ) ( V l ,  ... I %+I) 
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Here a hat denotes omission of the corresponding element. Note that the operator 8 is just 
the usual coboundrny operator for the consistent case [3-51. The cohomology groups with 
respect to SO and S are denoted by H ~ , ( K p f q )  and Ha(KP*q), respectively. As it is well 
known the consistent anomaly belongs to Ha(Ko-') and finally the consistent Schwinger 
term gives a class in &(K0f2). 

Since Hs, (KO.9) Z r(&*), we can formulate the covariance condition for anomalies and 
Schwinger terms cohomologcally by the following: 

Proposition 2. 

q .  

Before closing this section we will to mention an interesting fact about the equations 
(2.1) and (2.4). There exists an exact sequence 

0 + d x L i e G q  T A ~ Z ~ T M  -+ 0 (2.19) 

of vector bundles over A. Considering the dual of (2.19) and taking the nth exterior tensor 
product, one obtains the following exact sequence 

0 + A"z~T'M -+ AnT*A + E," + 0 (2.20) 

of vector bundles over d. Let us denote the complex of G-invariant differential forms on 
A by QG(d). Since (2.20) is also an exact sequence of G vector bundles, one can easily 
prove the exactness of the following two sequences of sections 

(2.21) 

where x(a)((l, . . . , &) := iy, . . . ivfn a, with a E P(d) and 
restriction of x to Q,(A). 

and anomalies, which underlies the anomalous continuity equations (2.1) and (2.4). 

E Lie G. Finally xq is the 

For n = 1, these sequences clearly exhibit the geometric relationship between currents 

3. The BRS-aIIti-BRS complex 

In this section we shall generalize the mathematical treatment of 131 in order also to include 
anti-BRS transformations. Then a new algebraic approach to determining solutions of the 
covariance condition which was proposed in [12,131 will be presented. 

Let R: P + M be a principal bundle with principal right action R and structure group 
G, whose Lie algebra will be denoted by g. The gauge group 0 is defined to be the group 
of all fibre preserving automorphisms Aug(P) of P. Equivalently, the gauge group may be 
identified with the group CG(,P, G) of all smooth maps x :  P + G, which are equivariant 
with respect to the adjoint actlon Ad of G onto itself. 
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Let S@) = @,S,,,@) be the symmetric tensor algebra of g with symmetric tensor 
product v and consider the S@) valued de Rham complex of P, denoted by Q ( P ,  S@)) = 
Q(P) 8 S@). This complex admits natural left actions of G and Q 

r(g)a := (R,* 8 Ad(g))cY g E G 
F E 8, a E Q(P, S@)) 

(3.1) 

respectively, where Ad(g)(ul v.. .vu,) = Ad(g)ul v.. . vAd(g)u, is the induced adjoint 
action of G on S@). Together with the bilinear product 

(011 €3 fi) ' (W 8 fz) := (011 A 012) €3 (fi V fz) (3.2) 
Q (P, S@)) becomes a graded commutative differential algebra (cf the appendix). The sub- 
complex Q(P, g) admits the structure of a graded differential Lie algebra with the bracket 
[, I defined by 

p(F)a := (F-')*e 

Cui E Q(P), fi E S@) 

rw azI(X1.. . . , Xptq) 

where 011 E W(P, g), cuz E Qq (P. g), Xi E X ( P )  and Zp* denotes the set of permutations 
of the first p + q numbers. 

The gauge algebra Lie0 can he identified with C g ( P ,  g), the Lie algebra of smooth 
ad equivariant maps 8:  P + g. Equivalently, LieG can also be considered as the space 
of all G-invariant, vertical smooth vector fields G ( P )  on P. 

The derived representations of g and Lie G on Q ( P ,  S@)) are given by (we shall denote 
them by the same symbols) 

respectively, where the Lie derivative L. is taken along the fundamental vector fields Z,, 
Zt generated by U E g and 5 E LieG, respectively. 

We begin our generalization by considering the triple graded space 

Ckq.' := CP(Lie0, Cq(LieG, Q'(P, S,(g))) 

= (Q'(P, S,@)) 8 Aq(Lie 0)') 8 AP(LieG)* (3.5) 
of all Cq(LieB, W(P, S,@))) valued, alternate p-linear maps on LieG. We define a 
representation 0, of LieG on C*(LieQ, SZ'(P, S,@))) by 

(@,(t)@)(n,. . . . v q )  := ~(t)(@(m,. . . , 0 + (ad*(t)@)(tlI.. . . I c). (3.6) 
There exists a bilinear product on C'.'.' := @,Cy which is induced by the product given 
in (3.2) and exterior multiplication in A(LieG)., namely 

(01 * Qd81,  . . ., $ p t + m ) ( ~ 1 7  . . ., VqltqJ 

(3.7) 



Algebraic structure of covariant anomalies 2231 

(3.10) 

Finally the total complex C' = $p,q,r Cp,q,' with total derivative A = d+sp+sq equipped 
with the product (3.7) becomes a graded commutative differential algebra. 

Now we display the BRS and anti-BRS relations in the sub-complex CT. Since Q(P, g) 
is a differential graded Lie algebra and /\(LieQ)* is a graded commutative differential 
algebra, the complex C; becomes a differential graded Lie algebra, where the bracket [, IC 
between homogenous elements reads 
[@1,@21C(tl.. . . ,t~,+p.p2) 

(3.11) 
for @I E C["q"r', $2 E CPBtn and E Lie 8. Here [ , ] is the usual bracket in the BRS 
complex Cqf.T.,ieg, Q"(P, 9)) induced by (3.3) and exterior multiplication in A(L.ieG).. 

We identify the BRS-UIti-BRS multiplet (A, c, 3, with A E A c eo**, c E Cp'", with 
c(t) = 6, and finally Z E Ci*o*o, with CO) = 6 ,  where 8 E Lie8. Let Da = d + [A, .] 
denote the covariant exterior derivative on P with respect to the connection A. Since 
p O ) A  = -DA$ and P(( )V  = I f ,  VI, we can prove by a direct computation the following: 
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Proposition 3. Let (A, c, E )  be the B R S - ~ - B R S  multiplet. Then the following relations 
hold 

spA = -DAC S ~ , A  = -DAE 

spc = -y[c. I c]C So,? = -+[E, ?lC 

spE = -[c, & SQ,C = 0. 

In the literature c and E are called the ghost and the antighost field respectively [161. Note 
that the BRS-anti-BRS transformations (proposition 3) do not act symmetrically. However, 
this property will be important for the formulation of the covariance condition. 

Now we want to present a simple method of determining covariant anomalies. Let 
p = A + c + Z E Cl  denote. the 'universal connection' and let AS = A + [p ,  .IC be the 
associated covariant derivative. The curvature of B is f = Ap+i[p. PIC. As aconsequence 
of the BRS and anti-BRS relations (proposition 3), an analogue of the well known' 'Russian' 
formula holds, namely 

f = FA = dA + &[A, AI. (3.12) 

Let us define the algebraic connection ,BO := A + c in the differential graded algebra C;. 
The curvature of Bo. denoted by fo, is easily calculated by using the BRS-&~-BRS relations, 
nmAy 

fo = FA - DAZ. (3.13) 

Furthermore, we find for the curvature fr of the family of connections p, := tp + (1 - t)po 

t ( t  - 1) 
(3.14) 2 

The dual Si@) can be identified with the space of symmetric m-linear forms on g by setting 
Z(ul,. . . , U,) = Z(u1 v . . . v u~). We choose the subspace 2,@) of Ad invariant forms 
of Sz@), i.e. forms Z E ,Si@) satisfying 

fr = F A  + (t - ~ ) D A Z +  - [E,  d. 

Z(Ad(g)ui,. . . I Ad(g)X,) = Z(ui,. . . , U,). 
Any Z E I,@) induces a linear map I: Cgq*' + Ctq''"" by 

(3.15) 

Z ( @ ) ( h , .  . ., F p ) ( m . . .  . , %&%. . . . , X.) 
:=I(Wt1, .... ~~b)('ll....,~qrlp)(xl, ..., X")) (3.16) 

and fulfills Z o A'' = A o Z for any y E C{ [3]. So one obtains, using the Bianchi identity 
AB'fl = 0 and the relation (d/dr)p, = APSE 

I d  
m dt 

(3.17) AB1(E*pI *. . . *BI) = --GI *. . . *PI). 

Applying Z E 2,@) on both sides of (3.17) and integrating, finally gives 

I( f *. . . * f) - I( fo *. . . * fo) = AQ = mA 

Let us denote Z(f") := I (  f * .  . . * f )  and I(f$"') := Z(f0 *. . . * fo). 

dt Z(E * ft *. . . * fr). (3.18) 

Decomposing 
L1 
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I(f"'"). Z(G'") E C p  and Q E Cp-' into a sum of elements, homogenous in antighost, 
ghost and form degree 

(3.19) 

equation (3,18) gives rise to the following generalized system of descent equations 

(3.20) (I(f*"') - I ( f l '" ) )b - i - j  =SO, Qz,,&~ +s,Q&,+j + dQ&,-i-j-l. 

Note that I (f"'"), I(f0'") and Q are equivariant and horizontal with respect to the principal 
G~ action and thus project to well defined differential forms on M. 

i .  j i-I j i j -1  i j  

It is evident from (3.12H3.14) that 

-0  for j #O. (3.21) +m i . j  - ~ ( f m  i J  i j  I ( f  )zm- i - j  - 0 )Z'"-i-j = o  e ; - i - j - l  - 
Using (3.21) we can derive the covariance condition from (3.20), namely 

(3.22) i o  
s p Q i - i - 1  = 0 

for the non-integrated covariant anomalies with antighost number i. This strong integrability 
condition for covariant anomalies of arbitrary antighost degree has also been obtained in [9] 
by using a different method. Our treatment of the BR-~~-BRS structure clearly exhibits 
the algebraic structure of this covariance condition. 

An explicit calculation gives for i = 1,2 

the non-integrated covariant anomaly and covariant Schwinger term; respectively. 
Before closing this section we show how the constructed solutions of (3.22) transform 

under infinitesimal gauge transformations. Since A is an affme space the Lie derivative of 
a functional 4 on A along the fundamental vector field Yc can be determined by calculating 

In general, Qg-i-l has the following form 

(3.24) 

(3.25) 
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where fpr4*' denotes the corresponding component of fr with respect to the triple grading 
of C:. Because of 

Ly ( I  f2*O*0 = 0 Ly6fr'-O*' = (t - ~ ) [ D A ' $ ,  .?I Ly r fO.O,Z f = [FA,'$] (3.26) 

and the identity [ [ c ,  &, Zlc + [ E ,  [t, ZIclc = [e, [Z, 4clc, which follows from the graded 
Jacobi identity in C;, a tedious calculation gives 

(3.27) 

2 0  -. 
If we define the integrated forms Anom = then (3.27) provides 
another proof of proposition 2. So we have explicitly shown that the (integrated) solutions 
of (3.22) admit the cohomological characterization which was established in a different way 
in section 2. 

Qg;ll-2 and s = 1 

Appendix 

Here we summarize the relevant definitions conceming differential algebras. 

Definition 1. A graded differential algebra is a graded vector space A = @"A" together 
with a bilinear product .: A x A + A and a linear operator d A d A with dz = 0, satisfying 

(0  AP . A4 C AP'P 

(ii) dAP c Ap+' 

(iii) d(a .b) =da. b+ (-l)Pa .db a E AP, b E A.  

Definition 2. A graded commutative differential algebra is a graded differential algebra A 
where the product is associative and satisfies 

a .  b = (-1)Pqb. a (I E AP, b E A4. 

Definition 3. A differential graded Lie algebra is a graded differential algebra A where 
the product satisfies 

0) a.b=(-l)pq+lb.a Q E A P ,  b E A 4  

(5) (-1)P'a . (b .  c) + (-1)qpb. (c. a) + (-9%. (a . b)  = 0 

a E A P ,  b E A 4 ,  C E A ' .  
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